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RECURSIVE ALGORITHMS FOR PATTERN CLASSIFICATION 
USING MISCLASSIFIED XAMPLES 

R. L. Kashyap 

ABSTRACT 

We consider the samples x(i) belonging to one of the two non-ov-rlapping 

classes, "1 and uO9 which possess a separating function f(x). 

membership of pattern x(i) is represented by the variable z(i) which can 

assume only one of two values, f - 1, or z(i) = [sgn f(x(i))]y(i) where 

n(i) is the measurement noise and E(T) is known. 

the training samples may be erroneous. 

pairs fx(i), z(i)I9 i=l, 2, ., we will obtain an optimal approximation to 
the separating function f (x). 

The observed 

Thus the membership of 

Using only the available sample 

! 

i 
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I. Introduction 

There are a number of ways of posing the  pattern classi f icat ion 

problem. 

tha t  we are given a sequence of patterns whose classif icat ion i s  known t o  

us. The given information regarding the  classi f icat ion may be erroneous. 

Based only on t h i s  information, w e  would l i ke  t o  develop decision functions 

t o  c lassi fy  new patterns. Since the number of available samples may be 

large, it i s  convenient t o  i n s i s t  that the method of computation of the 

decision function be recursive. 

pattern, we should be able t o  update the decision function i n  real time. 

Here we assume tha t  there are only two classes, w1 and wop and 

After the appearance of each t ra ining 

It i s  convenient t o  associate every pattern w i t h  a m-dimensional 

The components xl,x 2 , . . . , ~ m  of vector x known as the pattern vector. 

the pattern vector are referred t o  as the a t t r ibu tes  or features of the 

pattern. 

is a problem of considerable complexity, However, we assume the knowledge 

of some of the features associated w i t h  the patterns of the given problem. 

With every pattern we associate a scalar variable y, the so-called true 

The selection of the features associated w i t h  a set of patterns 

c lass  indicator, whose value indicates the class t o  which the pattern x 

belongs. The variable y assumes only one of two values, f - I. 
y = l  i f x f y  

y = -1 i f  x E wo 

Without any loss of generality, we can regard x and y as random 

variables with an unknown probabili ty density function p(x, y). 

on the nature of the conditional probability function p(y/x), w e  can 

divide the classif icat ion problems in to  two categories. 

consists of exanples i n  which the class  indicatesvariable y i s  a deterministic 

function of x; i.e., the probabili ty function p(y/x) can assume only one 

Based 

The first category 
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of two values, 0 or 1. I n  the second category, the variable y i s  a 

probabi l is t ic  function of x; i.e., 0 < p(y/x) < 1. A typical example of 

the first category i s  the alpha-numeric character recognition problem i n  

which every pattern has a unique class membership. A typical  example of 

the second category i s  the detection of a stochastic signal i n  the  presence 

of noise. 

We shall be concerned here only with the problems of the first category, 

the so-called deterministic c lass i f icat ion problems. I n  other words, the 

classes are  not overlapping i n  these problems. 

there exis ts  a separating function f (x )  (not necessarily unique) so tha t  

Hence, i n  every problem 

f(2L) > E > 0 x E o1 

< - E  x E wo 

Recalling the def ini t ion of the variable y 

y = sgn f (x )  = -I- 1 iff x E w1 

= - 1  i f f  x E oo 

Most of the problemposed i n  the  l i t e r a tu re  can be summarized as follows: 

given a sequence of patterns with known classif icat ion;  i.e., the  sample 

pairs  {x(i), y(i)], i=l, 2,. . ., find a decision function d(x) which i s  e i ther  

a separating function satisfying (P() or a "best" approximation t o  a 

separating function f (x) sratisfying (1.1). 

have been developed t o  solve th i s  problem l ike the fixed increment or  

A number of recursive algorithms 

1 perceptron algorithm of Novikov , the relaxation and orthogonal projection 
2 algorithms of Agmon , the  modified minimum mean square e r ror  algorithms of 

Ho and Kashyap , etc. It is  important t o  note that these algorithms lead 3 

t o  meaningful results only i f  the classi f icat ion of a l l  the patterns 

x(l) ,x(2),  etc, i s  known exactly. One does not know the behavior of the  



algorithms if  the information regarding the classi f icat ion of even a f e w  

of the samples i s  i n  error. 

develop algorithms which lead t o  meaningful resu l t s  even i f  there are a 

few errors i n  the classi f icat ion of the given t ra ining samples. 

paper i s  concerned only w i t h  t h i s  topic. 

An interesting question i s  whether we can 

T h i s  

11. Statement of the Problem 

I 

Let z represent the observed (noisy) class indicator variable 

z = f 1 i f  x is observed t o  be i n  c lass  y 
= - 1 if x i s  observed t o  be i n  class 

Recalling the def ini t ion of y, the t rue  class  indicator, w e  can represent 

z as 

z = Y T  

= [sgn f (x ) l  n (2.1) 

where f (x)  i s  the separating function defined i n  (1.1) and 17 i s  the 

measurement noise which can take only one of two values, +, 1. 

properties of the process 7 w i l l  be mentioned later. 

The 

A 

The problem is  t o  determine a "best" approximation f (x)  t o  a separating 

function f (x)  obeying (1.1) based only on the available sample pairs  

fx( i ) ,  z(i)], i=l, 2,. ., where z ( i )  i s  the measurement associated with the 

ith training pattern x(i). 

as the decision function fo r  classifying new samples i n  the  following 

A 

The function f (x )  mentioned herein will be used 

manner: 

94 1(x) > 0 

< o  

x w i l l  be placed i n  c lass  y 
x will be placed i n  class wo 

A A 

To determine f(x), we adopt the following procedure, We chose f (x )  

among the functions defined i n  (2.3). 
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n 

i=3 

. .  
: -  

where CXl, a2> . . .,a are the undetermined coefficients and %(x), . . ., vn(x) 
are known linearly independent functions in the variables x1,x2, ..., x 
The coefficients al, ..., an have to be chosen to minimize the error caused 
by the use of f(x) as the decision function for classifying the new patterns 

using the rule (2.2). 

sgn f(x) w i l l  be classified erroneously by the decision function f(x). 

n 

m' 

A 

It is clear that all samples x for which sgn f(x) # 
A A 

Consider the expectation of the misclassified patterns in the '9' space 

E [(sgn f(x) - sgn ; f ( x ) )  ~ ( X > J  b 4 )  

A reasonable way of choosing o! is t o  select it so that the expected value 

of the misclassified patterns given in (2. 

(2.5) 
T E [(sgn f(x) - sgn (a x)) cpi(x)] = 0 i=l,...,n 

* 
Let a solution of (2.5) be a and the corresponding optimal decision 

function is given in (2.6). 

i=l 
* 

Out intention is to solve the equation ( 2 . 5 )  for a using only the 

available sample pairs {x( i), z(i)l i=l, 2, *. . . 
111. Algorithm 

* 
To find the solution a of equations (2.5) in a recursive manner, we 

could use Newton's method. 

a(i+l) = a(i)+p(i) E[{sgn f(x) - sgn(aT(i)g(~(i))~]q(x(i))P(i)l (3.1) 

where p(i) is the scalar representing the step size. 

is of very little use since there is no way of evaluating the expectation 

Directly, (3.1) 
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term i n  it. Hence, w e  w i l l  replace the expectation term by an observable 

random vector whose expectation is  identical. w i t h  that  i n  (3.1). To do 

th i s  w e  need the following assumptions on the stochastic processes T(i)  

and x( i ) .  

(Al) The patterns x(l),x(2),x(3) . . . and the noise variables 

are a l l  s t a t i s t i c a l l y  independent of one another. T(l), 7)(2), . . 
( E )  E(T) ,a ii # 0 

Under these conditions we can replace the expectation term i n  (3.1) 

by the following random variable. 

by assumptions ( A l )  and (A2). Hence, algorithm (3.1) becomes 

To "compensate" for  the error  involved i n  replacing the expected value by 

the random variable i n  (3.2), the gain sequence p ( i )  should cbe- (3.4) 

p(i)  > 0 , c p ( i >  =a ., c p2(i> cco (3.4) 
i i 

In..order t o  establish the convergence 02 the agorithm (3.31, we 

need an additional assuqkion (A3) ..Ln addition t o  the assumptions (Al) 

and (A21 already made. 
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We will briefly remark on the assumptions. Assumptions (Al) and (A3) 

do not require any additional explanation. Consider assumption (A2). When 
A 

7 = 0, the probability of a training sample having correct classification 

is 0.5. In other words, we are not given any information at all. It is 

not surprising that the algorithm may not converge to the desired value 

in this case. Let us consider the cases ?) > 0 and ?l < 0 separately. When 
A I> 0, the percentage of training samples with correct classification is 
greater than that with wrong classification. It is easy to guess that 

the algorithm will work here. But what may be surprising, at first sight, 

is the convergence of the algorithm to the desired value when \ < 0. 
A 

However, we notice that when c 0, we work with the complements and 
- 
T instead of working directly with z and ?\ and E(?) = -E(?\) 7 0, This 

is possible since we are dealing with only two classes. 

The convergence properties of the algorithm (3.3) can be represented 

in the form of a proposition. 

Proposition: Consider the algorithm (3.3) with the gain pci) 

obeying the condition (3.4). 

tend to a in the mean square sense; i.e., 

Under assumptions (Al)-(A3), a(i> will 
-x- 

3t 
where a is the solution of the equation 

i=1,2, . e ., n 

(3.5) 

! 

i 
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n In  particular, i f  

f (x)  = 1 eicpi(x) 
i=l 

3c 
then a = e  

(3.7) 

IV. Proof of the Proposition 

* 
Let E ( i )  = a - a ( i )  

Scalar multiply (3.7) with itself and take conditional expectation keeping 

a(i) fixed. 
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Recall that a ( i )  i s  a function of the samples x(i-l) ,  x(i-2), ~ ( i - 3 ) ~  . . . 
and T(i- l ) ,  v(i-2). By assumption (Al) and (A2), the third term i n  

3t- (3.8) i s  zero. By definit ion of a! i n  (3.6) and (Al), the fourth term i n  

(3.8) i s  zero. By assumption (A3) 
2 fourth term i n  (3.8) - c p (i)kl 

where cO> kl > 0. 

where 

Substituting (3.12) i n  (3.10), we get 

... (3.14) 
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V i il, 

where 0 < E < 2. 1 
Taking expectations over a(i) in (3.18), we get 

(3.15) 

Using (3.16) repeatedly, we get 

Thus 
i 

Since C p(j) =m, (3.17) implies that 
3 

* * 
Since h(a(j),a ),g(a(j),a ) are non-negative for all a(j), (3.18) is valid 

if one of the following equalities (3.19) or (3.20) is valid. 
* c- - 

Lim E(h(a(j),a*)) = 0 (3.19) 
3 -+a3 

Lim E(gl(a(j),a*) = 0 
j -+a 

Among these, (3.19) is the weaker condition. Hence, 

This completes the proof of the proposition. 

(3.20) 
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V. Discussion 

We have developed an algorithm for finding an optimal decision function 

for classification using training samples which may be erroneously classified. 

It is necessary to have a knowledge of the average value of the corrupting 

noise. 

mentioned. 

nothing but the perceptron algorithm and it would not converge to any 

meaningful result when we have erroneous training samples. 

The use of the gain sequence p(i) as in (3.4) should also be 

If p ( i )  were a constant for all i, algorithm (3.3) would be 
1 

We would like to stress the fact that our algorithm does not need the 

knowledge of the structure of the separating function. 

to a surface which renders the expected values of the erroneously classified 

patterns zero. If, in addition, the separating function has a known linear 

representation as in (3.7), the algorithm (3.3) will lead to a separating 

function. 

It always converges 

A comment on the proof of convergence may be in order. Even though 

the algorithm (3.3) with the gains as in (3.4) may appear to belong to the 

family of stochastic approximation algorithms, its proof of convergence 

does not directly follow from the proofs of stochastic approximation 
4 5 6 algorithms [Venter , Gladyshev , Albert and Gardner 1 on account of the 

discontinuous nature of the correction term in (3.3). 

I 

I 

I 

. 

i 
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